- Infos im HLRS Wiki sind nicht rechtsverbindlich und ohne Gewähr -
- Information contained in the HLRS Wiki is not legally binding and HLRS is not responsible for any damages that might result from its use -
FFTW: Difference between revisions
From HLRS Platforms
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
This example shows the basic steps when using fftw. | This example shows the basic steps when using fftw. | ||
Load the necessary module | Load the necessary module. | ||
Example in case of the gnu double precision version: | |||
{{Command| command =<nowiki> | {{Command| command =<nowiki> | ||
module load numlib/fftw/3.3.2_double-openmpi-1.6-gnu-4.6.3 | module load numlib/fftw/3.3.2_double-openmpi-1.6-gnu-4.6.3 | ||
Line 94: | Line 96: | ||
}} | }} | ||
The shell variable $FFTW_HOME is available after loading the required modules. | The shell variable $FFTW_HOME is available after loading the required modules. | ||
For the single precision version all FFTW identifiers will begin with fftwf_ instead of fftw_. | For the single precision version all FFTW identifiers will begin with fftwf_ instead of fftw_. |
Revision as of 09:54, 9 October 2012
FFTW (Fastest Fourier Transform in the West) is a free collection of fast C routines for computing the Discrete Fourier Transform in one or more dimensions. It includes complex, real, symmetric and parallel transforms and can handle arbitrary array sizes efficiently. FFTW is typically faster than other publically-available FFT implementations and is even competitive with vendor-tuned libraries. |
|
Using FFTW on Nehalem cluster:
There are four versions of FFTW instaled on Nehalem cluster:
- intel single and double precision
- gnu single and double precision
Example
This example shows the basic steps when using fftw.
Load the necessary module.
Example in case of the gnu double precision version:
module load numlib/fftw/3.3.2_double-openmpi-1.6-gnu-4.6.3
Simple example:
File: ex1_fftw.c
/* * fft.c: compute FFT and IFFT from an array */ #include <stdio.h> #include <fftw3.h> #define SIZE 4 int main( int argc, char** argv ) { double input[SIZE] = { 1.0, 1.0, 1.0, 1.0 }; fftw_complex *data, *fft_result, *ifft_result; fftw_plan plan_forward, plan_backward; int i; data = ( fftw_complex* ) fftw_malloc( sizeof( fftw_complex ) * SIZE ); fft_result = ( fftw_complex* ) fftw_malloc( sizeof( fftw_complex ) * SIZE ); ifft_result = ( fftw_complex* ) fftw_malloc( sizeof( fftw_complex ) * SIZE ); plan_forward = fftw_plan_dft_1d( SIZE, data, fft_result, FFTW_FORWARD, FFTW_ESTIMATE ); plan_backward = fftw_plan_dft_1d( SIZE, fft_result, ifft_result, FFTW_BACKWARD, FFTW_ESTIMATE ); /* populate input data */ for( i = 0 ; i < SIZE ; i++ ) { data[i][0] = input[i]; data[i][1] = 0.0; } /* print initial data */ for( i = 0 ; i < SIZE ; i++ ) { fprintf( stdout, "data[%d] = { %2.2f, %2.2f }\n", i, data[i][0], data[i][1] ); } fftw_execute( plan_forward ); /* print fft result */ for( i = 0 ; i < SIZE ; i++ ) { fprintf( stdout, "fft_result[%d] = { %2.2f, %2.2f }\n", i, fft_result[i][0], fft_result[i][1] ); } fftw_execute( plan_backward ); /* print ifft result */ for( i = 0 ; i < SIZE ; i++ ) { fprintf( stdout, "ifft_result[%d] = { %2.2f, %2.2f }\n", i, ifft_result[i][0] / SIZE, ifft_result[i][1] / SIZE ); } /* free memory */ fftw_destroy_plan( plan_forward ); fftw_destroy_plan( plan_backward ); fftw_free( data ); fftw_free( fft_result ); fftw_free( ifft_result ); return 0; }
Compile with:
gcc ex1_fftw.c -o ex1 -I/$FFTW_HOME/include -L/$FFTW_HOME/lib -lfftw3
(lfftw3f for single version)
The shell variable $FFTW_HOME is available after loading the required modules.
For the single precision version all FFTW identifiers will begin with fftwf_ instead of fftw_.