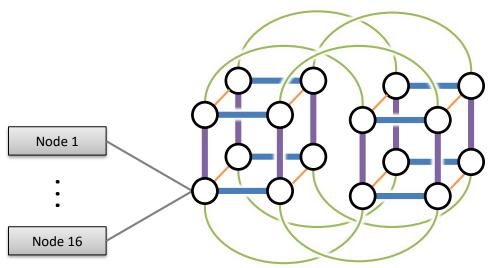
H L R S

Hawk Interconnect Network

Björn Dick (HLRS), Thomas Bönisch (HLRS), Bernd Krischok (HLRS)

Hardware



- InfiniBand HDR
 - 200 Gbit/s bidirectional bandwidth per link, also individual nodes are connected to the network with 200 Gbit/s links!
 - MPI Latency ~1.3 μs (nearest neighbor)

Per switch chip:

- 40 Ports:
 - 16 nodes
 - 23 ports used to connect switches as a hypercube
 - one switch in a rack uses remaining port to attach filesystem
- → fully non-blocking communication among 16 attached nodes

Interconnect topology

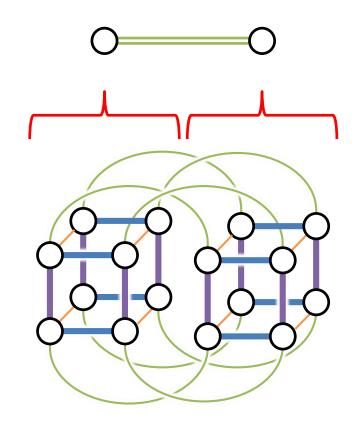
- 16 nodes connected to a common switch (represented by bullets)
- switches arranged as a (<u>partial</u> enhanced) 9D hypercube
- i.e. by iteratively
 - 1. doubling existing structures
 - 2. connecting corresponding nodes
- more links (→ enhanced B/W) on lower dimensions (thicker lines)

1D line 4 links
2D square 4 links
3D cube 3 links
4D hypercube 2 links
2 links
(partial) 2 links
hypercube

established by an entire rack

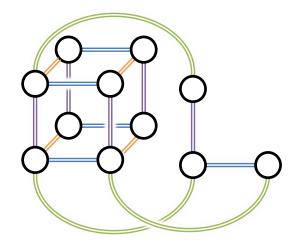
Hawk Tutorial :: 05.03.2020 ::

Remarks


 On 3D computational domains, remaining 6 dimensions can be used to maintain proximity.

We plan to deploy topology aware scheduling and MPI placement.

How to imagine higher dimensions?


- E.g. represent a 3D (hyper)cube by a single bullet.
- And also a 2nd 3D (hyper)cube.
- Connect the bullets in order to represent all the links between corresponding nodes of the 3D (hyper)cube.
- Now those "hyper"-nodes can be combined as seen before.

Only partial 9th dimension

- A bullet may represent a 5D hypercube.
- Then dimensions 6 to 8 can be visualized as a cube.
- Dimension 9 connects 8192
 compute nodes.
 However, Hawk incorporates 5632
 nodes only.
 So the 9D hypercube is truncated.

